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The pathophysiological variations in different glycoforms of acute-phase glycoproteins in serum most likely
result from changes in the glycosylation process during their biosynthesis in the parenchymal cells of the
liver. Biosynthesis in other cells or tissues may contribute, but in general appears to play a minor role.
Inflammatory cytokines appear to regulate the process, but glycosylation changes are independent of
protein synthesis. In addition, other humoral factors such as corticosteroids and growth factors are
involved. The interplay of these factors is determined by the stage of the disease (e.g. rheumatoid arthritis),
the physiological situation (e.g. pregnancy), or directly or indirectly by extraneous factors such as drugs
(e.g. ethanol). Information about the functional implications of the changes is limited, but some reports
suggest that for @;-acid glycoprotein the changes might affect the operation of the immune system.

Keywords: acute-phase proteins, disease, glycosylation

Pathophysiological changes in the
glycosylation of acute-phase proteins

Specific alterations in the glycosylation of acute-
phase proteins (APP) occur in many pathophysio-
logical states, e.g. acute and chronic inflammation,
cancer, a variety of liver diseases and during
pregnancy [see ref. 1 for recent review]. These
alterations accompany changes in the serum con-
centration of APP, but are independent of their
rate of synthesis and are found on both positive
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(e.g. aj-acid glycoprotein (AGP), a;-protease in-
hibitor (PI), haptoglobin (HG), a;-antichymotryp-
sin (ACT) [1-9]) and negative APP (e.g. a,-HS
glycoprotein (a, HS), transferrin (TF) [6, 10]). As
outlined below, the pattern of change in glycosyla-
tion is dependent on the particular state (e.g. acute
inflammation or pregnancy) or the type of disease
(e.g. rheumatoid arthritis (RA) or alcoholic liver
cirrhosis), and to some extent on the APP studied.

APP contain one or more asparagine-linked (N-
linked) carbohydrate structures, which may have
from two to four branches (diantennary, trianten-
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nary and tetraantennary structures) arising from
the al—3- and al— 6-linked mannose (Man)
residues of the core structure: Manal—
3(Manal — 6)Manf1 — 4GIcNAcS 1 — 4GIcNAc.
For human APP these branches generally consist
of Galfl— 4GlcNAc units (lactosamine units)
which can be further substituted with a2 — 3-
and/or a2 —> 6-linked sialic acid, al—2- or
ol — 3-linked fucose, or other sugars in a number
of different configurations [11, 16}.

Variation in the structure of an oligosaccharide
glycan has been previously referred to as micro-
heterogeneity. Two types of inflammation- or dis-
ease-induced microheterogeneity have been dis-
tinguished for APP: major microheterogeneity,
which reflects differences in the number of
branches in the antennary structures [2,4,9,17],
and minor microheterogeneity, which is caused by
variations in sialic acid, galactose and/or fucose
content {3,10,18-21]. In addition, the multiple
glycosylation sites on an APP mostly are occupied
by different glycans. As a result, different glyco-
forms of an APP can be distinguished in serum
and the proportions of these will change depending
upon the condition or disease that is present. Both
types of microheterogeneity can be studied in
serum by using techniques employing lectins such
as crossed immunoaffinoelectrophoresis or affinity
chromatography [see 1, 22 for reviews].

Changes in the degree of branching

A reversible decrease in the degree of branching
of APP glycans due to increased diantennary
glycan content is called Type I major micro-
heterogeneity. This has been demonstrated by in-
creased reactivity of APP with concanavalin A
(Con A) during acute-phase reactions after surgery
[2,20], in trauma after severe burning [5, 23, 24],
and in animal models or isolated liver cells after
treatment with dexamethasone [9,25], pheno-
barbital [26] or galactosamine [27] and after la-
parotomy [25]. The detection of this type of
change has been shown to be useful as an addi-
tional marker in the determination of intercurrent
infections in chronic inflammatory diseases, like
RA [28] and systemic lupus erythematosus [29].

A reversible increase in branching (Type 11
major microheterogeneity: decreased diantennary
glycan content) has been shown for AGP in
maternal serum during pregnancy [30-32]. In-
terestingly, in the fetal serum, AGP molecules
express a Type 1 microheterogeneity which
changes progressively during the development of
the fetus to the normal pattern of the newborn
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(30, 33]. Increases in branching of APP have also
been found in RA grade III and IV [34], during
liver diseases like alcoholic liver cirrhosis [35] and
in hepatitis {36, 37]. Both increases and decreases
in branching have been described for a number of
APP in cancer [1, 38-44].

Changes in terminal glycosylation

The majority of reported changes in terminal
glycosylation of APP (also called minor micro-
heterogeneity) are related to the degree and the
type of substitution of the N-linked glycans with
sialic acid and/or fucose [e.g. 1,3, 10, 18-21, 39,
42, 44-46]. These changes differ according to the
disease and the protein studied. In RA, sialylation
is increased in TF [10], but decreased in AGP
[46, 47], and unchanged in HG [21]. Consumption
of large amounts of alcohol induces a decreased
sialylation of TF [48]. Furthermore, decreased sia-
lylation of AGP has been found in relation to
benign liver diseases [35], whereas the sialylation
of AGP and TF have been reported to be in-
creased in cancer sera compared with healthy sera
(42, 46, 49, 50]. In some studies, the type of glycan
substitution with sialic acid was also investigated
and these showed that increased expression of
a2 — 3-linked sialic acid occurs for TF in cancer
[42] and for AGP in liver cirrhosis [51]. When in
the latter glycan a sialylated lactosamine unit is
substituted with an a1 — 3-linked fucose residue,
as suggested for TF in liver cancer [42], this will
result in increased expression of the blood
group antigen sialyl Le* (SLEX; NeuAca2—
3-Galal — 4(Fucal — 3)GIcNAc-R).

Increased expression of SLEX in combination
with an elevated fucosylation of AGP occurs
during acute inflammation [20], in liver cirrhosis
[51,52] and was suggested to occur in RA [53].
Inflammatory conditions and tumor growth appear
to affect also the fucosylation of other APP [3, 18,
19,21, 42-45, 49, 53-55]. Most of these changes
represent an increased occurrence of al — 3-linked
fucose residues on the APP. Changes in fucosyla-
tion frequently coincide with changes in branching,
but they are not necessarily determined by it
[20, 45, 53, 55]. It must be kept in mind, however,
that in most studies the changes described have
been detected by indirect methods. Therefore,
almost no structural data are available yet concern-
ing which of the branches of a glycan are modified
by the disease, or whether the type of branching
or the glycosylation site at which it occurs on the
APP can have influenced the fucosylation and
sialylation.



Regulation of the changes in glycosylation
in APP

Cytokine-induced alterations in the glycosylation of
APP in the liver

The liver is known to be the major source of APP
under normal physiological and inflammatory con-
ditions, and the changes in serum concentrations
of APP result mainly from the effects of inflamma-
tory cytokines and other humoral factors on their
biosynthesis by the liver [56,57]. It is thought,
therefore, that the accompanying changes in the
proportions of different APP glycoforms originate
from modifications in the post-translational glyco-
sylation mechanisms in the liver, rather than from
degradative processes in the circulation (see later).
This latter conclusion is supported by the effects of
liver damage on the various glycoforms of AGP
and PI in serum [27,35-37,45]. Much of the
experimental evidence has been obtained by in
vitro studies of the effects of cytokines and gluco-
corticoids on the glycosylation of newly-synthes-
ized APP in (primary) cultures of hepatocytes
isolated from human [4, 6], rat [6, 25, 58] or mouse
livers [59] and cultures of human hepatoma cell
lines [6,41,55,60,61]. The validity of this ap-
proach for the study of inflammation-related
events has been established by investigating the
effects of cytokines and glucocorticoids on the
regulatory mechanisms of APP gene expression
[57,62]. The hepatocytes and hepatoma cell lines
appeared to be capable of synthesizing and secret-
ing all the differently branched glycoforms of the
APP studied as occurring in control and patient or
animal sera.

Two different types of change in the major
microheterogeneity of APP were observed for hu-
man hepatocytes and the human hepatoma cell
lines Hep-3B and Hep-G2 cells after treatment
with cytokines (e.g. interleukin (IL)-1, IL-6, inter-
feron (IFN)-y, tumor necrosis factor (TNF)-a,
TNF-p) and/or glucocorticoids. For human hepato-
cytes and Hep-3B cells, the changes resembled the
Type I changes observed in sera of patients with
acute inflammatory states. This occurred with both
positive (AGP, PI, HG, ACT) and negative
(a,HS) APP, and was accompanied by increased
synthesis of the positive [4,6,41,63] and de-
creased synthesis of the negative APP [6]. For
Hep-G2 cells, the opposite effect was observed for
secreted AGP, PI, HG and ACT [41, 63], i.e. the
secreted APP displayed the Type II changes ob-
served in sera of patients with some chronic in-
flammatory states. This was also accompanied by
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increased synthesis of the APP [7,28,34]. The
nature of the minor microheterogeneity of APP
has not yet been thoroughly studied. However,
isolated human hepatocytes have been found to
secrete the fucosylated glycoforms of AGP that are
found in normal human serum (T. W. Graaf and
W. van Dijk, unpublished results), and increased
fucosylation has been observed in Hep-G2 cells for
secreted ACT and PI (W. van Dijk and A. Mac-
kiewicz, unpublished results) and TF [55].

These results strongly support the theory that
changes in the relative proportions of APP glyco-
forms are generated by variations in the post-
translational glycosylation process in the parench-
ymal cells of the liver, and that cytokines and
glucocorticoids are involved in inducing these
changes. Surprisingly, all cytokines had a similar
effect on the synthesis of APP, although the mag-
nitude of the effect was dependent on the APP
studied. The different effects of cytokines on the
glycosylation suggest an uncoupling in the regula-
tion of secretion and glycosylation. The existence
of such uncoupling was also found for the glyco-
sylation and secretion of rat AGP [6]. It can be
concluded, therefore, that the signal transduction
pathways for the regulation of the changes in
glycosylation of APP are at least partly independ-
ent of those governing protein synthesis.

It seems unlikely that the cytokine-induced
changes can be explained by the effects on ex-
pression of different genetic variants. Previous
studies have shown that there are minor changes in
the relative proportions of the products of the
three AGP genes during acute inflammation, and
these cannot account for the major alterations in
the diantennary glycan content of AGP [64]. This
has been further confirmed in a transgenic mouse
model, where multiple glycoforms of human AGP
were found in the sera of mice in which only one
human AGP gene was expressed [65]. It cannot be
excluded, however, that increased protein produc-
tion could have an effect on the APP micro-
heterogeneity, as was suggested from studies with
isolated hepatocytes from transgenic mice express-
ing the rat AGP gene [59].

The effects of cytokines on glycosylation of APP
depends on the particular cytokine and combina-
tions of different cytokines can result in synergistic
or antagonistic effects. The cytokines can be
divided according to their effects into different
classes: (i) those inducing Type I and Type II
alterations (IL-6), (ii) those inducing Type I altera-
tions (TGF-B), (iii) those inducing Type II altera-
tions (LIF, TNF-a, IFN-y), and (iv) those which
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did not exert direct effects, but which could mod-
ulate the activity of other cytokines (IL-1) [re-
viewed in 66]. The various alterations in glycosyla-
tion found in vivo are most likely controlled by the
cooperation of various cytokines and other factors,
like glucocorticoids, rather than by a single factor.
This is supported by in vitro studies showing that
the magnitude and the type of glycosylation altera-
tion were dependent on the composition and the
amount of interacting cytokines, and that these
effects could be further modulated by the treat-
ment with the synthetic glucocorticoid dexametha-
sone [reviewed in 66]. The mechanisms by which
cytokines induce these modifications in glycosyla-
tion of APP are unknown, but changes have been
noted in components of the post-translational bio-
synthetic pathways in the liver during inflammation
[67-70].

Contribution of extrahepatic cells

The in vitro studies with hepatocytes and hepa-
toma cell lines have clearly shown that these cells
can produce all the glycosylation variants present
in normal and patient sera. So it seems likely that
in most situations the liver is the major sowurce.
Contributions from extrahepatic cells cannot be
totally excluded since a few groups have reported
on the secretion of APP by various blood cells.
For instance leukocytes and alveolar macrophages
are able to synthesize PI [71-73], and AGP can be
secreted by human lymphocytes, granulocytes and
monocytes [74,75]. Since inflammation is associ-
ated with proliferation of leukocytes, part of the
observed changes in glycosylation and synthesis of
APP in inflammation could originate from these
cells [75].

Inflammation-induced changes in the glycan
biosynthesis

The biosynthesis of glycans is accomplished by a
multistep enzymatic process occurring on the endo-
plasmic reticulum and in the Golgi complex, and
involves a series of highly specific glycosyltrans-
ferases and glycosidases [76-78). Branching of N-
linked glycans is initated at an early stage of the
glycan formation in the cis-Golgi system by the
addition of N-acetylglucosamine (GIcNAc) res-
idues to the inner core structure. At least four
different GlcNAc transferases (GNTases) are in-
volved in the formation of the various branched
glycans. Control of the relative activities of these
enzymes is one of the mechanisms regulating the
branching process [76-78]. GNTase IV and V
catalyze the formation of tri- and tetraantennary
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glycans and therefore changes in the activities of
these enzymes can be expected to occur under
inflammatory conditions. Although detailed studies
of GNTases have not been performed with liver
cells, treatment of human myeloma cells with IL-6
stimulated the activities of GNTases IV and V,
and was accompanied by increased expression of
tri- and tetraantennary glycans on the membrane-
bound glycoproteins [79].

Changes in sialylation and fucosylation are de-
termined by the activities and specificities of the
sialyl (STase) and fucosyltransferase (FTase)
[78, 80], and it appears that the action of &6-STase
(sialic acida2 — 6Gal-) is mutually exclusive of the
actions of a3-STase (sialic acida2 — 3Gal-) and
a3-FTase (Fucal— 3GIcNAc-). In addition, the
branch specificities of these glycosyltransferases
are non-identical, which results in differences in
the terminal glycosylation of di-, tri- and tetra-
antennary glycans [81]. It can be expected that
with increased branching of the acceptor glycan
there will be a shift from branch termination by an
a6-linked sialic acid residue to termination by an
a3-linked sialic acid residue, which in combination
with the action of the a3-FTase will yield the
SLEX antigen [80]. Changes in the absolute and
relative activities of the enzymes will determine
the number of glycans that will be terminated in
this way. So, it is possible that the high expression
of SLEX structures on AGP during inflammation
[20, 53] is caused by an increase in the activity of
a3-FTase. Elevated serum levels of a3-FTase have
been found in RA [S Thompson and GA Turner,
unpublished observations].

There could be additional or alternative mech-
anisms. a6-STase in the Golgi system could be
mislocated or prematurely released during the he-
patic acute-phase response [68-70], which in turn
could increase the incorporation of sialic acid and
fucose residues by a3-STase and a3-FTase, re-
spectively. Cytokines and dexamethasone have
been shown to regulate the expression and secre-
tion of a6-STase in rat and human hepatocytes
[69, 82], and may also up- or down-regulate the
expression of other glycosyltransferases.

Changes in other components involved in the
biosynthetic mechanisms could contribute to the
regulation of the changes in glycosylation of APP.
It has been reported that inflammation induces
variations in the availability of nucleotide-sugars
(the substrates for the glycosyltransferases)
[83-85], as well as the availability of dolichol and
dolichol-phosphate (the precursors of the dolichol-
linked oligosaccharide precursor for N-linked gly-



cans) [86]. Furthermore, an altered rate of intra-
cellular transport or an altered route of transit of
APP has been suggested to exist during inflamma-
tion [87-89].

Role of serum glycosyltransferases

The possible involvement of serum glycosyltrans-
ferases in changes in APP glycosylation can only
be considered for those enzymes involved in the
terminal addition of sugars, i.e. sialylation, fuco-
sylation or galactosylation. Modifications, by
serum enzymes, in the type of branching cannot
occur because these are determined at an early
stage of the biosynthetic process [77]. Galactosyl-,
sialyl and fucosyltransferases are known to occur
in sera, and changes in the levels have been
described under various pathological and physiolo-
gical circumstances [68-70,90-97]. Large direct
effects on the glycosylation in serum, however,
seem unlikely, because serum glycoproteins are
turning over rapidly and the appropriate nucleo-
tide-sugar substrates are only present at very low
levels in serum. Nevertheless, it cannot be ex-
cluded that at sites where cellular damage has
occurred these compounds have been released and
that they could be locally used by the respective
serum glycosyltransferases. It seems possible that
some glycosyltransferases are present in serum in
high amounts as acute-phase reactants, as the liver
can be induced to secrete a6-STase by IL-6 and
dexamethasone [69, 70].

Effects of circulating glycosidases and the selective
removal of different glycoforms

Glycosidases can be released into the circulation
by inflamed tissues [82, 98] and by cancers [98, 99],
and they could affect the glycosylation of APP by
removing terminal carbohydrate residues such as
sialic acid, fucose or galactose. Increased amounts
of circulating undersialylated glycoproteins have
been detected in liver disease [100-102]; however,
this could be caused by the abnormality in the
hepatic asialoglycoprotein receptor which has been
found in these situations (102, 103].

Selective removal of different glycoforms by
branch-specific tissue lectins may also contribute to
the changes in glycosylation of APP observed in
serum. This is suggested by a study in which
different glycoforms of human AGP were injected
into normal and acute-phase-response activated
rats [104]. Activation of the acute-phase response
in the rat resulted in a somewhat decreased half-
life for the glycoform with only tri- and tetraanten-
nary glycans (12 vs 14 h for the normal rat) and a
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slightly increased half-life for the glycoform in
which one of the glycans was replaced by a dian-
tennary glycan (16 vs 13 h for normal rats). The
authors concluded, however, that the small
changes observed in the elimination of the various
glycoforms were not sufficient to explain the large
changes in glycosylation of AGP observed in the
acute-phase response.

Physiological functions

Inflammation-induced changes in the glycosylation
of APP have been found in human, rat and mouse
serum [see, e.g. 1, 25, 59] and therefore appear to
be an essential phenomenon in the general inflam-
matory reaction. These changes occur on several
glycoproteins at approximately the same time,
leading to a completely different carbohydrate
phenotype for the majority of the plasma proteins.
This particularly happens during acute inflammat-
ory reactions when the serum albumin levels are
lowered to counterbalance the large increases in
the positive acute-phase glycoproteins. Dependent
of the stage of inflammation, the plasma glycopro-
teins will express predominantly certain glycan
chains, e.g. diantennary glycans in the early phase
of acute inflammation or highly fucosylated tri- or
tetraantennary glycans towards the end of that
condition [20] or in liver cirrhosis [51].

Glycan structures play a crucial role in a number
of biological processes [105,106], of which the
selectin-mediated interaction between leukocytes
and endothelial cells in homing and inflammatory
processes are currently the most fascinating
[107,108]. Changes in the levels of the various
glycoforms of APP, therefore, can be expected to
be of importance in the function of these
molecules in the inflammatory reaction. This as-
pect has not yet been thoroughly studied.

Most studies of the physiological role of the
glycosylation of APP have been concentrated on
AGP, most probably because the exact function of
this major APP is not known and because AGP is
the major carrier of tri- and tetraantennary glycans
in normal human serum [109]. Several in vitro
studies [110-113} have shown that AGP can mod-
ulate the immune system, e.g. (i) inhibition of
T-cell proliferation [114, 115] and (ii) induction of
an IL-1 inhibitor in macrophages [116]. These
effects are concentration dependent, reach optima
in the physiological range of concentrations and in
many cases involve the carbohydrate portion of the
molecule.
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In other studies, the rheological properties of
AGP have been shown to be dependent on its
diantennary glycan content [117]. This might ex-
plain why in acute-phase-induced rats the distri-
bution volume of human AGP is lower for the
glycoforms containing only tri- and tetraantennary
glycans than for the glycoforms containing also
diantennary glycans [104].

Changes in the sialylation and fucosylation of
APP can result in the increased expression of
SLEX structures—structures that have been shown
to be involved in the selectin-mediated interaction
of leukocytes and endothelial cells in homing and
inflammatory processes [108]. It has been postu-
lated that the inflammation-induced changes in the
expression of SLEX on AGP, and on other APP,
may have an inhibitory effect on the selectin-
mediated influx of leukocytes into inflamed areas
[20, 53, 118] and may represent a humoral feed-
back response of the hepatic acute-phase reaction
to dampen down the cellular inflammatory reac-
tion.

Concluding remarks

This minireview has shown that change in the
glycosylation of APP in health and disease is a
complex and fascinating field with many unre-
solved questions for future studies. Of particular
importance is the need to clarify the function(s) of
these carbohydrate changes and to understand in
more detail the mechanisms by which they are
regulated.

Recent technical developments have resulted in
easier methods to purify APP [44], analyze carbo-
hydrate structure in small amounts of material
{3.44,119] and isolate various glycoforms [120].
These new procedures, coupled with our increasing
knowledge of glycosyltranferase genes, will enable
us to test the various ideas suggested in this review
and lead to a better understanding of the processes
involved.
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