
Glycosylation & Disease, i994, 1, 5-14 

REVIEW 

Changes in glycosylation of acute-phase proteins 
in health and disease: occurrence, regulation and 
function 

W i l l e m  van  Di jk* ,  G r a h a m  A.  T u r n e r ?  a n d  A n d r z e j  Mack iewicz~  

*Department of Medical Chemistry, Faculty of Medicine, Vrije Universiteit, Amsterdam, The Netherlands; 
?Department of Clinical Biochemistry, The Medical School, The University, Newcastle upon Tyne, UK; 
and SDepartment of Cancer Immunology, University Medical School at GreatPoland Cancer Centre, 
Poznari, Poland 

The pathophysiological variations in different glycoforms of acute-phase glycoproteins in serum most likely 
result from changes in the glycosylation process during their biosynthesis in the parenchymal cells of the 
liver. Biosynthesis in other cells or tissues may contribute, but in general appears to play a minor role. 
Inflammatory cytokines appear to regulate the process, but glycosylation changes are independent of 
protein synthesis. In addition, other humoral factors such as corticosteroids and growth factors are 
involved. The interplay of these factors is determined by the stage of the disease (e.g. rheumatoid arthritis), 
the physiological situation (e.g. pregnancy), or directly or indirectly by extraneous factors such as drugs 
(e.g. ethanol). Information about the functional implications of the changes is limited, but some reports 
suggest that for al-acid glycoprotein the changes might affect the operation of the immune system. 
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Pa thophys io log ica l  c h a n g e s  in t he  
g lycosy la t ion  o f  a c u t e - p h a s e  p ro te ins  

Specific alterations in the glycosylation of acute- 
phase proteins (APP) occur in many pathophysio- 
logical states, e.g. acute and chronic inflammation, 
cancer, a variety of liver diseases and during 
pregnancy [see ref. 1 for recent review]. These 
alterations accompany changes in the serum con- 
centration of APP, but are independent of their 
rate of synthesis and are found on both positive 
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(e.g. o;1-acid glycoprotein (AGP), oq-protease in- 
hibitor (PI), haptoglobin (HG), cq-antichymotryp- 
sin (ACT) [1-9]) and negative APP (e.g. cr2-HS 
glycoprotein (ol2 HS), transferrin (TF) [6, 10]). As 
outlined below, the pattern of change in glycosyla- 
tion is dependent on the particular state (e.g. acute 
inflammation or pregnancy) or the type of disease 
(e.g. rheumatoid arthritis (RA) or alcoholic liver 
cirrhosis), and to some extent on the APP studied. 

APP contain one or more asparagine-linked (N- 
linked) carbohydrate structures, which may have 
from two to four branches (diantennary, trianten- 

1994 Rapid Communications of Oxford Ltd Glycosylation & Disease Vol 1 No 1 5 



W. van Dijk et al. 

nary and tetraantennary structures) arising from 
the o:1 ~ 3- and o:1 ~ 6-1inked mannose (Man) 
residues of the core structure: Mano:l 
3(Mano:l ~ 6)Manfll ~ 4GlcNAcfl 1 ~ 4GIcNAc. 
For human APP these branches generally consist 
of Gal/31 ~ 4GIcNAc units (lactosamine units) 
which can be further substituted with o:2---~3- 
and/or o:2~6-1inked sialic acid, o : 1 ~ 2 -  or 
o:l--~ 3-1inked fucose, or other sugars in a number 
of different configurations [11, 16]. 

Variation in the structure of an oligosaccharide 
glycan has been previously referred to as micro- 
heterogeneity. Two types of inflammation- or dis- 
ease-induced microheterogeneity have been dis- 
tinguished for APP: major microheterogeneity, 
which reflects differences in the number of 
branches in the antennary structures [2, 4, 9, 17], 
and minor microheterogeneity, which is caused by 
variations in sialic acid, galactose and/or fucose 
content [3, 10, 18-21]. In addition, the multiple 
glycosylation sites on an APP mostly are occupied 
by different glycans. As a result, different glyco- 
forms of an APP can be distinguished in serum 
and the proportions of these will change depending 
upon the condition or disease that is present. Both 
types of microheterogeneity can be studied in 
serum by using techniques employing lectins such 
as crossed immunoaffinoelectrophoresis or affinity 
chromatography [see 1, 22 for reviews]. 

Changes in the degree of branching 
A reversible decrease in the degree of branching 
of APP glycans due to increased diantennary 
glycan content is called Type I major micro- 
heterogeneity. This has been demonstrated by in- 
creased reactivity of APP with concanavalin A 
(Con A) during acute-phase reactions after surgery 
[2, 20], in trauma after severe burning [5, 23, 24], 
and in animal models or isolated liver cells after 
treatment with dexamethasone [9,25], pheno- 
barbital [26] or galactosamine [27] and after la- 
parotomy [25]. The detection of this type of 
change has been shown to be useful as an addi- 
tional marker in the determination of intercurrent 
infections in chronic inflammatory diseases, like 
RA [28] and systemic lupus erythematosus [29]. 

A reversible increase in branching (Type II 
major microheterogeneity: decreased diantennary 
glycan content) has been shown for AGP in 
maternal serum during pregnancy [30-32]. In- 
terestingly, in the fetal serum, AGP molecules 
express a Type I microheterogeneity which 
changes progressively during the development of 
the fetus to the normal pattern of the newborn 

[30, 33]. Increases in branching of APP have also 
been found in RA grade III and IV [34], during 
liver diseases like alcoholic liver cirrhosis [35] and 
in hepatitis [36, 37]. Both increases and decreases 
in branching have been described for a number of 
APP in cancer [1, 38-44]. 

Changes in terminal glycosylation 
The majority of reported changes in terminal 
glycosylation of APP (also called minor micro- 
heterogeneity) are related to the degree and the 
type of substitution of the N-linked glycans with 
sialic acid and/or fucose [e.g. 1, 3, 10, 18-21, 39, 
42, 44-46]. These changes differ according to the 
disease and the protein studied. In RA, sialylation 
is increased in TF [10], but decreased in AGP 
[46, 47], and unchanged in HG [21]. Consumption 
of large amounts of alcohol induces a decreased 
sialylation of TF [48]. Furthermore, decreased sia- 
lylation of AGP has been found in relation to 
benign liver diseases [35], whereas the sialylation 
of AGP and TF have been reported to be in- 
creased in cancer sera compared with healthy sera 
[42, 46, 49, 50]. In some studies, the type of glycan 
substitution with sialic acid was also investigated 
and these showed that increased expression of 
o:2---~ 3-1inked sialic acid occurs for TF in cancer 
[42] and for AGP in liver cirrhosis [51]. When in 
the latter glycan a sialylated lactosamine unit is 
substituted with an o:l ~ 3-1inked fucose residue, 
as suggested for TF in liver cancer [42], this will 
result in increased expression of the blood 
group antigen sialyl Le x (SLEX; NeuAco:2--* 
3-Galo:l ~ 4(Fuco:l ~ 3)GlcNAc-R). 

Increased expression of SLEX in combination 
with an elevated fucosylation of AGP occurs 
during acute inflammation [20], in liver cirrhosis 
[51,52] and was suggested to occur in RA [53]. 
Inflammatory conditions and tumor growth appear 
to affect also the fucosylation of other APP [3, 18, 
19, 21, 42-45, 49, 53-55]. Most of these changes 
represent an increased occurrence of o:l ~ 3-1inked 
fucose residues on the APP. Changes in fucosyla- 
tion frequently coincide with changes in branching, 
but they are not necessarily determined by it 
[20, 45, 53, 55]. It must be kept in mind, however, 
that in most studies the changes described have 
been detected by indirect methods. Therefore, 
almost no structural data are available yet concern- 
ing which of the branches of a glycan are modified 
by the disease, or whether the type of branching 
or the glycosylation site at which it occurs on the 
APP can have influenced the fucosylation and 
sialylation. 
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Regulation of the changes in glycosylation 
in APP 

Cytokine-induced alterations in the glycosylation of  
APP in the liver 
The liver is known to be the major source of APP 
under normal physiological and inflammatory con- 
ditions, and the changes in serum concentrations 
of APP result mainly from the effects of inflamma- 
tory cytokines and other humoral factors on their 
biosynthesis by the liver [56, 57]. It is thought, 
therefore, that the accompanying changes in the 
proportions of different APP glycoforms originate 
from modifications in the post-translational glyco- 
sylation mechanisms in the liver, rather than from 
degradative processes in the circulation (see later). 
This latter conclusion is supported by the effects of 
liver damage on the various glycoforms of AGP 
and PI in serum [27, 35-37, 45]. Much of the 
experimental evidence has been obtained by in 
vitro studies of the effects of cytokines and gluco- 
corticoids on the glycosylation of newly-synthes- 
ized APP in (primary) cultures of hepatocytes 
isolated from human [4, 6], rat [6, 25, 58] or mouse 
livers [59] and cultures of human hepatoma cell 
lines [6, 41, 55, 60, 61]. The validity of this ap- 
proach for the study of inflammation-related 
events has been established by investigating the 
effects of cytokines and glucocorticoids on the 
regulatory mechanisms of APP gene expression 
[57, 62]. The hepatocytes and hepatoma cell lines 
appeared to be capable of synthesizing and secret- 
ing all the differently branched glycoforms of the 
APP studied as occurring in control and patient or 
animal sera. 

Two different types of change in the major 
microheterogeneity of APP were observed for hu- 
man hepatocytes and the human hepatoma cell 
lines Hep-3B and Hep-G2 cells after treatment 
with cytokines (e.g. interleukin (IL)-I, IL-6, inter- 
feron (IFN)-y, tumor necrosis factor (TNF)-o~, 
TNF-/3) and/or glucocorticoids. For human hepato- 
cytes and Hep-3B cells, the changes resembled the 
Type I changes observed in sera of patients with 
acute inflammatory states. This occurred with both 
positive (AGP, PI, HG, ACT) and negative 
(o:~HS) APP, and was accompanied by increased 
synthesis of the positive [4,6,41,63] and de- 
creased synthesis of the negative APP [6]. For 
Hep-G2 cells, the opposite effect was observed for 
secreted AGP, PI, HG and ACT [41, 63], i.e. the 
secreted APP displayed the Type II changes ob- 
served in sera of patients with some chronic in- 
flammatory states. This was also accompanied by 

increased synthesis of the APP [7, 28, 34]. The 
nature of the minor microheterogeneity of APP 
has not yet been thoroughly studied. However, 
isolated human hepatocytes have been found to 
secrete the fucosylated glycoforms of AGP that are 
found in normal human serum (T. W. Graaf and 
W. van Dijk, unpublished results), and increased 
fucosylation has been observed in Hep-G2 cells for 
secreted ACT and PI (W. van Dijk and A. Mac- 
kiewicz, unpublished results) and TF [55]. 

These results strongly support the theory that 
changes in the relative proportions of APP glyco- 
forms are generated by variations in the post- 
translational glycosylation process in the parench- 
ymal cells of the liver, and that cytokines and 
glucocorticoids are involved in inducing these 
changes. Surprisingly, all cytokines had a similar 
effect on the synthesis of APP, although the mag- 
nitude of the effect was dependent on the APP 
studied. The different effects of cytokines on the 
glycosylation suggest an uncoupling in the regula- 
tion of secretion and glycosylation. The existence 
of such uncoupling was also found for the glyco- 
sylation and secretion of rat AGP [6]. It can be 
concluded, therefore, that the signal transduction 
pathways for the regulation of the changes in 
glycosylation of APP are at least partly independ- 
ent of those governing protein synthesis. 

It seems unlikely that the cytokine-induced 
changes can be explained by the effects on ex- 
pression of different genetic variants. Previous 
studies have shown that there are minor changes in 
the relative proportions of the products of the 
three AGP genes during acute inflammation, and 
these cannot account for the major alterations in 
the diantennary glycan content of AGP [64]. This 
has been further confirmed in a transgenic mouse 
model, where multiple glycoforms of human AGP 
were found in the sera of mice in which only one 
human AGP gene was expressed [65]. It cannot be 
excluded, however, that increased protein produc- 
tion could have an effect on the APP micro- 
heterogeneity, as was suggested from studies with 
isolated hepatocytes from transgenic mice express- 
ing the rat AGP gene [59]. 

The effects of cytokines on glycosylation of APP 
depends on the particular cytokine and combina- 
tions of different cytokines can result in synergistic 
or antagonistic effects. The cytokines can be 
divided according to their effects into different 
classes: (i) those inducing Type I and Type II 
alterations (IL-6), (ii) those inducing Type I altera- 
tions (TGF-/3), (iii) those inducing Type II altera- 
tions (LIF, TNF-cr, IFN-y), and (iv) those which 
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did not exert direct effects, but which could mod- 
ulate the activity of other cytokines (IL-1) [re- 
viewed in 66]. The various alterations in glycosyla- 
tion found in vivo are most likely controlled by the 
cooperation of various cytokines and other factors, 
like glucocorticoids, rather than by a single factor. 
This is supported by in vitro studies showing that 
the magnitude and the type of glycosylation altera- 
tion were dependent on the composition and the 
amount of interacting cytokines, and that these 
effects could be further modulated by the treat- 
ment with the synthetic glucocorticoid dexametha- 
sone [reviewed in 66]. The mechanisms by which 
cytokines induce these modifications in glycosyla- 
tion of APP are unknown, but changes have been 
noted in components of the post-translational bio- 
synthetic pathways in the liver during inflammation 
[67-70]. 

Contribution of  extrahepatic cells 
The in vitro studies with hepatocytes and hepa- 
toma cell lines have clearly shown that these cells 
can produce all the glycosylation variants present 
in normal and patient sera. So it seems likely that 
in most situations the liver is the major source. 
Contributions from extrahepatic cells cannot be 
totally excluded since a few groups have reported 
on the secretion of APP by various blood cells. 
For instance leukocytes and alveolar macrophages 
are able to synthesize PI [71-73], and AGP can be 
secreted by human lymphocytes, granulocytes and 
monocytes [74, 75]. Since inflammation is associ- 
ated with proliferation of leukocytes, part of the 
observed changes in glycosylation and synthesis of 
APP in inflammation could originate from these 
cells [75]. 

Inflammation-induced changes in the glycan 
biosynthesis 
The biosynthesis of glycans is accomplished by a 
multistep enzymatic process occurring on the endo- 
plasmic reticulum and in the Golgi complex, and 
involves a series of highly specific glycosyltrans- 
ferases and glycosidases[76-78]. Branching of N- 
linked glycans is initated at an early stage of the 
glycan formation in the cis-Golgi system by the 
addition of N-acetylglucosamine (GlcNAc) res- 
idues to the inner core structure. At least four 
different GlcNAc transferases (GNTases) are in- 
volved in the formation of the various branched 
glycans. Control of the relative activities of these 
enzymes is one of the mechanisms regulating the 
branching process [76-78]. GNTase IV and V 
catalyze the formation of tri- and tetraantennary 

glycans and therefore changes in the activities of 
these enzymes can be expected to occur under 
inflammatory conditions. Although detailed studies 
of GNTases have not been performed with liver 
cells, treatment of human myeloma cells with IL-6 
stimulated the activities of GNTases IV and V, 
and was accompanied by increased expression of 
tri- and tetraantennary glycans on the membrane- 
bound glycoproteins [79]. 

Changes in sialylation and fucosylation are de- 
termined by the activities and specificities of the 
sialyl (STase) and fucosyltransferase (FTase) 
[78, 80], and it appears that the action of oL6-STase 
(sialic acidcr2 --, 6Gal-) is mutually exclusive of the 
actions of o:3-STase (sialic acidcr2--> 3Gal-) and 
cr3-FTase (Fuccrl---> 3GIcNAc-). In addition, the 
branch specificities of these glycosyltransferases 
are non-identical, which results in differences in 
the terminal glycosylation of di-, tri- and tetra- 
antennary glycans [81]. It can be expected that 
with increased branching of the acceptor glycan 
there will be a shift from branch termination by an 
o:6-1inked sialic acid residue to termination by an 
c~3-1inked sialic acid residue, which in combination 
with the action of the c~3-FTase will yield the 
SLEX antigen [80]. Changes in the absolute and 
relative activities of the enzymes will determine 
the number of glycans that will be terminated in 
this way. So, it is possible that the high expression 
of SLEX structures on AGP during inflammation 
[20, 53] is caused by an increase in the activity of 
o:3-FTase. Elevated serum levels of 0~3-FTase have 
been found in RA [S Thompson and GA Turner, 
unpublished observations]. 

There could be additional or alternative mech- 
anisms, o:6-STase in the Golgi system could be 
mislocated or prematurely released during the he- 
patic acute-phase response [68-70], which in turn 
could increase the incorporation of sialic acid and 
fucose residues by 013-STase and cr3-FTase, re- 
spectively. Cytokines and dexamethasone have 
been shown to regulate the expression and secre- 
tion of oL6-STase in rat and human hepatocytes 
[69, 82], and may also up- or down-regulate the 
expression of other glycosyltransferases. 

Changes in other components involved in the 
biosynthetic mechanisms could contribute to the 
regulation of the changes in glycosylation of APP. 
It has been reported that inflammation induces 
variations in the availability of nucleotide-sugars 
(the substrates for the glycosyltransferases) 
[83-85], as well as the availability of dolichol and 
dolichol-phosphate (the precursors of the dolichol- 
linked oligosaccharide precursor for N-linked gly- 
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cans) [86]. Furthermore, an altered rate of intra- 
cellular transport or an altered route of transit of 
APP has been suggested to exist during inflamma- 
tion [87-89]. 

Role of serum glycosyltransferases 
The possible involvement of serum glycosyltrans- 
ferases in changes in APP glycosylation can only 
be considered for those enzymes involved in the 
terminal addition of sugars, i.e. sialylation, fuco- 
sylation or galactosylation. Modifications, by 
serum enzymes, in the type of branching cannot 
occur because these are determined at an early 
stage of the biosynthetic process [77]. Galactosyl-, 
sialyl and fucosyltransferases are known to occur 
in sera, and changes in the levels have been 
described under various pathological and physiolo- 
gical circumstances [68-70,90-97]. Large direct 
effects on the glycosylation in serum, however, 
seem unlikely, because serum glycoproteins are 
turning over rapidly and the appropriate nucleo- 
tide-sugar substrates are only present at very low 
levels in serum. Nevertheless, it cannot be ex- 
cluded that at sites where cellular damage has 
occurred these compounds have been released and 
that they could be locally used by the respective 
serum glycosyltransferases. It seems possible that 
some glycosyltransferases are present in serum in 
high amounts as acute-phase reactants, as the liver 
can be induced to secrete o~6-STase by IL-6 and 
dexamethasone [69, 70]. 

Effects of circulating glycosidases and the selective 
removal of different glycoforms 
Glycosidases can be released into the circulation 
by inflamed tissues [82, 98] and by cancers [98, 99], 
and they could affect the glycosylation of APP by 
removing terminal carbohydrate residues such as 
sialic acid, fucose or galactose. Increased amounts 
of circulating undersialylated glycoproteins have 
been detected in liver disease [100-102]; however, 
this could be caused by the abnormality in the 
hepatic asialoglycoprotein receptor which has been 
found in these situations [102, 103]. 

Selective removal of different glycoforms by 
branch-specific tissue lectins may also contribute to 
the changes in glycosylation of APP observed in 
serum. This is suggested by a study in which 
different glycoforms of human AGP were injected 
into normal and acute-phase-response activated 
rats [104]. Activation of the acute-phase response 
in the rat resulted in a somewhat decreased half- 
life for the glycoform with only tri- and tetraanten- 
nary glycans (12 vs 14 h for the normal rat) and a 

slightly increased half-life for the glycoform in 
which one of the glycans was replaced by a dian- 
tennary glycan (16 vs 13 h for normal rats). The 
authors concluded, however, that the small 
changes observed in the elimination of the various 
glycoforms were not sufficient to explain the large 
changes in glycosylation of AGP observed in the 
acute-phase response. 

Physiological functions 

Inflammation-induced changes in the glycosylation 
of APP have been found in human, rat and mouse 
serum [see, e.g. 1, 25, 59] and therefore appear to 
be an essential phenomenon in the general inflam- 
matory reaction. These changes occur on several 
glycoproteins at approximately the same time, 
leading to a completely different carbohydrate 
phenotype for the majority of the plasma proteins. 
This particularly happens during acute inflammat- 
ory reactions when the serum albumin levels are 
lowered to counterbalance the large increases in 
the positive acute-phase glycoproteins. Dependent 
of the stage of inflammation, the plasma glycopro- 
teins will express predominantly certain glycan 
chains, e.g. diantennary glycans in the early phase 
of acute inflammation or highly fucosylated tri- or 
tetraantennary glycans towards the end of that 
condition [20] or in liver cirrhosis [51]. 

Glycan structures play a crucial role in a number 
of biological processes [105,106], of which the 
selectin-mediated interaction between leukocytes 
and endothelial cells in homing and inflammatory 
processes are currently the most fascinating 
[107,108]. Changes in the levels of the various 
glycoforms of APP, therefore, can be expected to 
be of importance in the function of these 
molecules in the inflammatory reaction. This as- 
pect has not yet been thoroughly studied. 

Most studies of the physiological role of the 
glycosylation of APP have been concentrated on 
AGP, most probably because the exact function of 
this major APP is not known and because AGP is 
the major carrier of tri- and tetraantennary glycans 
in normal human serum [109]. Several in vitro 
studies [110-113] have shown that AGP can mod- 
ulate the immune system, e.g. (i) inhibition of 
T-cell proliferation [114, 115] and (ii) induction of 
an IL-1 inhibitor in macrophages [116]. These 
effects are concentration dependent, reach optima 
in the physiological range of concentrations and in 
many cases involve the carbohydrate portion of the 
molecule. 
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In other  studies, the rheological properties of 
A G P  have been shown to be dependent  on its 
diantennary glycan content [117]. This might ex- 
plain why in acute-phase-induced rats the distri- 
bution volume of human A G P  is lower for the 
glycoforms containing only tri- and tetraantennary 
glycans than for the glycoforms containing also 
diantennary glycans [104]. 

Changes in the sialylation and fucosylation of 
APP can result in the increased expression of 
SLEX structures--structures that have been shown 
to be involved in the selectin-mediated interaction 
of leukocytes and endothelial cells in homing and 
inflammatory processes [108]. It has been postu- 
lated that the inflammation-induced changes in the 
expression of SLEX on AGP,  and on other  APP, 
may have an inhibitory effect on the selectin- 
mediated influx of leukocytes into inflamed areas 
[20, 53,118] and may represent a humoral feed- 
back response of the hepatic acute-phase reaction 
to dampen down the cellular inflammatory reac- 
tion. 

Concluding remarks 

This minireview has shown that change in the 
glycosylation of APP in health and disease is a 
complex and fascinating field with many unre- 
solved questions for future studies. Of particular 
importance is the need to clarify the function(s) of 
these carbohydrate changes and to understand in 
more detail the mechanisms by which they are 
regulated. 

Recent technical developments have resulted in 
easier methods to purify APP [44], analyze carbo- 
hydrate structure in small amounts of material 
[3,44, 119] and isolate various glycoforms [120]. 
These new procedures,  coupled with our increasing 
knowledge of glycosyltranferase genes, will enable 
us to test the various ideas suggested in this review 
and lead to a bet ter  understanding of the processes 
involved. 
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